Feeds:
Posts
Comments

Archive for the ‘Uncategorized’ Category

Butterfly kiss

Thank you my dear blog readers for your support through the last couple of years.

I have very much enjoyed writing about native plants, botany, and ethnobotany.

I will soon be updating my blog with the next essay on trees.  I will be discussing the 12 most important deciduous trees in the Cascadian bioregion including identification strategies, leaf shapes, seeds, range, wildlife habitat and ethnobotany.

See you soon….  Thanks again for all your views!

Read Full Post »

“Beauty and seduction, I believe, is nature’s tool for survival, because we will protect what we fall in love with.”– Louie Schwartzberg, from The Hidden Beauty of Pollination

After I posted the first part of the “The flower in three parts” my current essay series, I received an email from someone who said “The Flower in three parts, sounds like a symphony”.  Yes, I said, that is the energy I have been trying to convey to others that botany, plants, native plants, flowers are all part of a symphony of life. Each part of the flower and its growth processes are important to the whole. The first part or movement was to turn your attention to this fantastic creation sitting at the end of a stem. I hoped to raise your curiosity.  I tried to flood your senses with wonder at the design and substance of flowers. It was a slow movement encumbered by way too much vocabulary but necessary if you are to truly meet the flower in all its wonder.

I have been drawing you into the allegro or opening sonata in order to capture your attention for the second movement the main allegro or scherzo: The pollination cycle or sex life of flowers. And finally in The Flower – part 3: “The Flower as Healer”, I will end with one of the strongest connections between humans and flowers: they heal us – the finale – we are flowers ourselves.  We are they and they are us. What we do to the flower, we do to ourselves. If we kill off the pollinators and clear-cut the plant kingdom, so goes all Eden, of which we are a part.

But now for Part 2: Pollination and The Sex Life of Flowers

The name of the second part “The sex life of Flowers” came from my research on flowers and their ways and means of pollination. While researching I

Sauromatum-guttatum-Voodoo Lilly

discovered a scientist named Bastiaan Jacob Dirk Meeuse.  He was a naturalist and botanist who was a professor at the University of Washington. He lived from 1916 to 1999.  Meeuse was a prolific researcher whose five decades of research on the exotic but stinky voodoo lily resulted in numerous contributions to science.  Dr. Meeuse was an authority on pollination, especially by insects and birds, and wrote the textbook ”The Story of Pollination” (1961).

In the 1980’s his research contributed to a well-known public television documentary called “Sexual Encounters of the Floral Kind” (1983). I have links to segments of the documentary in end of this essay. In 1984 Meeuse co-authored a book along with Sean Morris called “The Sex Life of Flowers”.

Meeuse was a botanist attracted by the exotic, he unlocked the secrets of the voodoo lily (Sauromatum guttatum) a relative of the corpse flower (Amorphophallus titanum). The voodoo lily has a very strong smell and generates much heat, up to 108 degrees when it ready for pollination. When it flowers, perhaps once a year, its fleshy purple spike emits waves of heat and an odor not unlike that of rotting meat. The chemicals released by the heat apparently helped to attract pollinators. (see picture).

Meeuse, along with his research team documented the flower cycle and the important relationship between pollinators and flowers. Meeuse and Morris found innumerable examples of mimicry in which the flower part has evolved to resemble a female bee. The male, trying unsuccessfully to mate with the flower, unwittingly collects and spreads the orchid’s pollen.

Here are a few facts about mimcry in pollination: When the male wasp tries to mate with the dummy female, he fails, but the orchid succeeds in getting pollen on the wasp. He flies away, only to be fooled again by another orchid pulling the same trick. In the process, the wasp transfers pollen from flower to flower. Plants that are farther away from each other are more likely to be distant relatives, so mimicry may reduce inbreeding. Posing as a sexual suitor may be a strategy that allows the geographic spread of plants over a wide area — generally, insects will travel further to find a mate than to find a meal.

Here is a link to the BBC documentary using some of Meeuse’s research:Wild Orchid and wasp mimicry – http://www.youtube.com/watch?v=-h8I3cqpgnA

Another important aspect of Meeuse’s research was to show that flowers develop MANY paths to pollination.  Flowers can be asexual (agamogenesis), hermaphrodites, only male or only female. And then there are the combinations. The only way to learn about a plant and its lovely flower is to sit with it, study it. Learn its entire life path. You just can’t make any broad statements about how flower reproduction takes place.

THE FERTILIZATION PATHWAY OF THE ZUCCINI SQUASH

Female and Male flowers of Zucchini Squash

Let’s look at the squash plant: A Zucchini squash plant has both male and female flowers.  Male flowers usually appear first and have a thin stem. Female flowers appear later and have a small, baby zucchini developing between the base of the flower and the vine. The male flower will usually open in the early morning, attract a certain type of early morning foraging insect, then can die away by the late afternoon.  The female flower will open later in the day and again attracts the same pollinating bee or insect and is fertilized by the pollen it is carrying.  If the small squash rots away then it has not been fertilized.  This can show a lack of garden pollinators. Hand pollination may be the only way to have a good crop of squash.

There is a very fragile dance going on here.  If there are no pollinator bees or other insects, our food will disappear. On most flowering plants there is only one short time frame in which a flower can be pollinated and if the conditions are just right or there are not enough pollinators available, no fertilization can happen. As in many processes in nature, timing is important. The female reproductive part of a flower is receptive to pollen only at certain times of the year. Creatures like insects and birds, which move from flower to flower in search of food, are a fast and often guaranteed way for plants to distribute their pollen.

Not all flowers need to be so cunning. Several angiosperm species including grasses bear inconspicuous blossoms – that use the wind for pollination.

Sometimes drought and disease can cause squash plants to only produce male flowers. Now this lack of fertilization can also be caused by severe weather change, or lack of fertilization in the soil types or pollution that causes mutations of plant or pollinator. Yes, the fragile dance is important to support.

PLANT CELLS AND THE MERISTEM-FLORAL

Floral-Meristem Physiology

For the last few months I have been leading you on a journey from the root to the stem to the branch and now on to the flower. All the while following the adventures of the meristem cell.  At the point of developing the flower, the meristem cell morphs into a meristem-floral cell and begins to produces cells that will become the structure of the flower.Plants produce 2 types of reproductive cells.  The first is the spore – found on such plants as ferns. The second is formed during sexual reproduction – a process where a population is divided into male and female members or distinct male and female structures on individual plants. The DNA of the plant, stored in these specialized flower cells will begin to build the structures and organelles that will become the flower. Flowers give rise to fruit and seeds.

BASIC SEXUAL PARTS OF A FLOWER

Flowers are short branches bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved (Capon 2010).  Both the male and the female reproductive parts of a plant are in the center of the flower. The male, pollen-producing part is called the anther, held aloft by a stalk called a filament. The entire male apparatus is called a stamen. Each pollen grain is unique to its species. The female reproductive part of a plant, the stigma, sits on top of a style, or stalk, which leads to an ovary at the base. The entire female plant mechanism is called a pistil. This is the illustration of a perfect flower having both female and male parts (some do).

Flowers have figured out a way to do the amazing things they do while taking care of the place that will take care of their offspring.  They are focused on having their genetic material here 10,000 years from now. Plants seduce pollinators with fragrance, hue, platform structure and a promise of sex with another of its own kind and ensure return visits with the promise of nectar.

Some flowers attract with scent, some with color. Most offer nectar as an enticement to visitors and as a way to ensure repeat visits. The chemical ecology of plants seeks not only to attract pollinators, but keep predators away. The complexity of floral odors mediate interactions between flowers and pollinators to guarantee reproductive success (Carde and Ring 2004).

Return business is particularly important for plants that encase many seeds in a single fruit—raspberries, for instance, or melons. A poorly pollinated raspberry will have many shrunken, dry drupelets. A melon blossom that doesn’t attract enough pollinators may produce a melon that is small, lopsided, and not very sweet.

A few varieties of plants have adapted the shape of their flowers to favor certain pollinators—tubular blossoms attract hummingbirds, for instance, but the nectar is often inaccessible to bees.

Lady Slipper Orchid

Other plants aren’t choosy. They’ll do business with birds and bees, and also with wasps, beetles, rodents, and even humans if that’s what it takes to move the pollen.Many flowers have a distinctive bull’s-eye color pattern or a throat of a different shade from the outside petals, to help insects and birds find the payload of pollen.

Plant structures, too, are designed to attract specific pollinating partners. The Queen Anne’s lace flower places its nectar right at the base of its tiny flowers where pollinators with a short proboscis (nectar-gathering appendage) such as honeybees, ants, wasps, flies, and beetles can reach it when they crawl on the flower. On the other hand, bumblebees, butterflies, and moths have long proboscises, which enable them to reach nectar in less accessible places. For example, the long shape and curve of the columbine flower complements the long tongue of a bee, butterfly, or hummingbird. By concealing the nectar deep within its trumpet-like blossoms, the columbine prevents animals who are not its pollination partners from taking the nectar and transferring any pollen.

WHY ARE HUMANS ATTRACTED TO FLOWERS?

Are humans also pollinators?  Michael Pollan, author of “Botany of Desire” writes in his 2002 article called “Border Whores” that some evolutionary psychologists have proposed an interesting answer. Their hypothesis goes like this: our brains developed under the pressure of natural selection to make us good foragers, which is how humans have spent 99 per cent of their time on Earth. The presence of flowers is a reliable predictor of future food. People who were drawn to flowers, and who, further, could distinguish among them, would be much more successful foragers than people who were blind to their significance. In time the moment of recognition—much like the quickening one feels whenever an object of desire is spotted in the landscape—would become pleasurable, and the signifying thing a thing of beauty.

Humans have danced with the flowers, written poetry, songs and spent endless hours nurturing their flower gardens.  The flower is etched into our psyche- we are changed by the floral scents, the structure and the nectar.  Humans have used flowers for food and medicine for thousands if not millions of years.  It has only been recently that we have become “plant and flower blind. It has only been in the last 100 years that we have begun to call certain flowers “weeds” and have conducted a chemical warfare on our beloved inspirers.

We humans have lost the ability to love the plants and their flowers. We cannot see the connection between life on earth and the need to pave over paradise. We need to grow and protect fertility.  In ensemble that is what ecosystems do, it creates more and more opportunity for life. We need to create conditions conducive to life the same way flowers and plants do. Ban all the dangerous chemicals and stop making war on the natural world.  We need to make peace with the flowers and the plants and all species. Namaste.

CASCADIAN NATIVE PLANTS THAT YOU SHOULD KNOW ABOUT

Oceanspray-Pacific Ninebark-Spirea

Matthew Shepherd of the Xerces Society reports that there are approximately 900 species of bees and approximately 200 species of butterflies in the Cascadian bioregion.  Native plants are the forage of choice by these pollinators. Some native plants attract a great many pollinators.  Cascading plants such as Pacific Ninebark (Physocarpus capitatus), White Spirea (Spiraeabetulifolia), and Ocean Spray (Holodiscus discolor) could be attracting hundreds of types of pollinators.  They often grow near wetlands, stream banks and moist forest lands.  They should be included in all landscaping projects where ever possible. These essential native plants will bring wildlife into any garden or natural area and guarantee the pollination for many flowers.

Another extremely important indigenous plant is the Willow. The Willow species are the basis of a vital food web for insects, birds, small mammals, larger animals; many soil organisms, bacteria and fungi. They are a very important habitat.  In particular Apis mellifera, (the honey bee) an insect belonging to the Hymenoptera Order use the early blooming Willow flowers (catkins) to survive long wet, cold springs. These insects are not damaging to the willow leaves or flowers, but are feeding on nectar and are helping to pollinate other early blooming plants (Aliner 1992).

The flowers of the Willow are inflorescences, taking the form of catkins, which develop in a familiar way, through the loss of the bud scale and the revelation of the silky hairs of the ‘Pussy Willow’. Eventually, however, the anthers surmount the filaments of the stamens and reveal a vivid display of pollen from pale yellow through gold to shades of red and purple depending on the species.

BEE COLONY COLLAPSE – A CANARY IN THE MIND SHAFT?

And finally I leave you with this little video called “The Beauty of Pollination”.  The speaker is director and producer Louie Schwartzberg.  He is presenting his work as part of the TED TALKS.  His deep concern for the present bee colony collapse that is decimating pollinators worldwide caused him to take all his film making skills and present a dire message to the world.  “The destruction of the bee is like a canary in the coal mine- once the bees are gone, then the flowers will disappear. Once the flowers are gone – then we will be gone.” You cannot truly love the flowers if you do not love the pollinators. Feast your eyes on this TED TALK on

The Hidden Beauty of Pollination:

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx: The whorl of sepals on the outside of a flower is referred to as the calyx.
  • Corolla: The whorl of petals is called the corolla.
  • Filament: The filament provides support for the anther in the stamen.
  • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
  • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
  • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
  • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Ailner, J. Edward (1992) The Tree Book Collins and Brown Ltd

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Carde, Ring T. and Millar, Jocelyn G:  Editors (2004) Advances in Insect Chemical Ecology – Cambridge University Press

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers Faber & Faber, London.

Meesue, B J D (1961) The Story of Pollination, Ronald Press, New York, NY

Meeuse, Bastiaan contributior – Documentary “Sexual Encounters of the Floral Kind”  part one: http://www.youtube.com/watch?v=1Qi7Pnth_t8

Pollan, Michael (2002) Border Whores, The Times London, March 9, 2002 Viewed on the internet May 18, 2012 http://michaelpollan.com/articles-archive/border-whores/

Shepherd, Matthew (2012) Xerces Society, Portland, Oregon http://www.xerces.org/ from a private email on 5-18-2012

Shepherd, Matthew, et al. Pacific Northwest Plants for Native Bees, Xerces Society, The invertebrate Conservation, viewed on the web on 5-12-2012 http://www.xerces.org/wp-content/uploads/2010/01/pacificnw-plants-for-bees-xerces3.pdf

Weiss, M. 1991. Floral colour changes as cues for pollinators. Nature 354:227-229.

WEB RESOURCES

Websites:

  • The sexual encounter of the floral kind. A 12 part series produced by public television and based on the research of Bastiaan Meeuse. Part 1 -Video on how flowers attract pollinators.  The male wasp and the flower.

http://www.youtube.com/watch?v=Hv4n85-SqxQ&feature=relmfu

  • North American Pollinator Protection Campaign – The best website available for resources on pollination, projects for classrooms, organizations affiliated with the Pollination Protection Campaign and more. Detailed lesson plans for in the classroom with teacher guides and student guides available for printing directly off website. Availability to order posters and materials for the classroom. http://www.nappc.org/
  • Xerces Society –The invertebrate Conservation organization located in Portland, Oregon. A very valuable organization and website. Lots of resources and education material.  – http://www.xerces.org/

Next time: The Flower:  Part 3 – The Flower as healer

Read Full Post »

“The ‘Amen!’ of Nature is always a flower.”
– Oliver Wendell Holmes

I have been reading so much about flowers lately and I want to teach you what I learned as well as what I know.  So, I am going to teach about the flower in three parts.  Part 1: The history, physiology and pattern of the flowers (to help you identify flowering plants).  Part 2: Pollination and the sex life of flowers, and Part 3: The flower as a healing agent.

THE FLOWER – PART ONE

How did this happen. The flower is so different than any other tissue on the plant. The flower is a creation so beautiful and so attracting and it grows at the tip of the green or brown stem or branch of a plant. The flower is as intricately designed as if created to reflect the fractal formulas of the universe. The flower is designed to include color, shape, aroma, and chemical attractants to bring forth the pollinators so that it can complete its cycle of life: reproduction of itself.  How beautiful and how perfect it seems to us humans too. But, how is it created?  The answer is again found in the DNA of the plant and the meristem cells that drive the action in creating the plant. In this essay we are introduced to the Floral Meristem.

FLORAL MERISTEM

Last time we learned about the leaf.  We learned that the leaf was formed by the action of chemical changes and apical meristem cells.   The plant is reaching for the sun just as there is enough warmth, light, chemistry, moisture and food and creating new structures that will help it thrive.

The meristematic cells give rise to various organs of the plant, and keep the plant growing. The Shoot Apical Meristem (SAM) gives rise to organs like the leaves and flowers. When plants begin the developmental process known as flowering, the shoot apical meristem is transformed into an inflorescence meristem, which goes on to produce the floral meristem, which produces the familiar sepals, petals, stamens, and carpels of the flower. Floral meristem cells are responsible for determinate growth.  That is, they know exactly what they are supposed to create and that is the flower. And, this flower will live long enought to reproduce the plant and then die. The floral meristem cells direct the limited growth of the flower to a particular size and form. The transition from shoot meristem to floral meristem requires floral meristem identity genes that both specify the floral organs and cause the termination of the production of stem cells at just the right time. The floral meristem identity genes are “turned on” at the time the leaf meristem is turned on.  In fact some parts of flowers (bracts) are actually modified leafs. If you would like to learn more detail about this process please check out the wiki on Meristems located at http://en.wikipedia.org/wiki/Meristem

Queen Anne's Lace

THE HISTORY, PHYSIOLOGY AND PATTERN OF FLOWERS

The ancestors of flowering plants diverged from gymnosperms around 245–202 million years ago, and the first flowering plants known to exist are from 140 million years ago. They diversified enormously during the Lower Cretaceous and became widespread around 100 million years ago, but replaced conifers as the dominant trees only around 60–100 million years ago. (Wikipedia)

Non-flowering plants includes conifers, ginkgoes, ferns, cycads, horsetails, and mosses

A Flower is the reproductive structure of a tree or other plant, consisting of at least one pistil or stamen, and often including petals and sepals. According to botanist Brian Capon the flower is a short branch bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved.

A land plant that flowers is called an angiosperm.  The Angiosperms are seed-producing plants like the gymnosperms and can be distinguished from the gymnosperms by a certain characteristics including  flowers, endosperm within the seeds, and the production of fruits that contain the seeds.

Flowers aid angiosperms by enabling a wider range of adaptability and broadening the ecological niches open to them. This has allowed flowering plants to largely dominate terrestrial ecosystems.

There are an estimated 352,282 unique flowering plant names, it is also estimated that there are approximately 69,500 known species of monocots and 49,500 known species of non-monocot species. The number of presently unknown plant species is thought to be 10 to 20 per cent or 20,000 to 30,000 species (Joppa, Roberts, and Pimm 2010).   The number of flowering monocot plants increased steadily for the last 250 years up until about 1850 when the number began to plateau.  There has been a steady decline in the last 50 years of known species and there are still species that have not been discovered.  The decline is due to habitat encroachment and environmental degradation.

MONOCOT VS DICOT – A REFRESHER

Monocot vs Dicot

Traditionally, the flowering plants have been divided into two major groups, or classes: the Dicots (Magnoliopsida) and the Monocots (Liliopsida).  The Dicotyledon is typically described as group of flowering plants whose seed typically has two embryonic leaves or cotyledons. The monocotyledon is typically described as having one embryonic leaf.

The Dicotyledon class has the following characteristics: – two seeds, – netted veins in the leaves, usually tap-rooted, usually complex branching, – flower parts mostly patterned in 4’s and 5’s. Example of the dicotyledon flowers would be: buttercup, rose, gentian and aster.

Monocotyledon class has the following characteristics: – one seed leaf, – parallel veins in the leaves, – horizontal rootstalks, – usually simple branching – flower parts mostly in 3’s. Examples of the flowers would be: arrowhead, lily and orchid.

FLOWER PHYSIOLOGY

Flower physiology

The parts of the flower are important to learn as the specific arrangement of flower parts will help you to identify a specific plant. There is a more complete list of flower parts with definitions at the end of this essay, but for now we will be focusing on petals, sepals, pistil, stamens, ovary, stigma, and style.

FLOWER PATTERNS OF SPECIFIC PLANT FAMILES

Mustard family – They have four free saccate sepals and four clawed free petals, staggered. The mustard family flower pattern includes 4 petals, 4 sepals, 4 tall stamens, 2 short stamens (Examples: Wild Mustard, Wall flower, Water Cress, Stock, Candytuft, and Lunaria)

The mints, taxonomically known as Lamiaceae or Labiatae – 5 united petals, (2 lobes up, 3 down), 5 untied sepals, 4 stamens (2 long, 2 short). Flower matures into a seed capsule containing four nutlets. (Examples: Horehound, Self Heal, Stinging Nettles, basil, mint, rosemary, sage, savory, marjoram, oregano, thyme, lavender, and perilla)

The Apiaceae (or Umbelliferae), commonly known as carrot or parsley family – 5 petals, 5 stamens, 2-cell ovary, compound umbels (Examples: angelica, anisewater hemlock, Water parsnip, Queen Anne’s lace, cow parsnip, parsnip, dill and fennel).

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family – irregular flowers- 5 petals forming banner, wings and keel.  The keel consists of two petals fused together. Internal fused and free stamen. Fabaceae range in habit from giant trees (like Koompassia excelsa) to small annual herbs, with the majority being herbaceous perennials. (Examples: wisteria, pea, bean, acacia, mimosa, vetch,

Lilly or Lilium family is a genus of herbaceous flowering plants growing from bulbs, all with large, prominent flowers. – Flowers with parts in three. Sepals and petals usually identical. 3 sepals, and 3 petals (same size and color), 6 stamens, Pistil with a 3-parted stigma. (Examples: Tiger lilly, Shasta Lilly, Leopard Lilly,

Malvaceae, or the mallow family, is a family of flowering plants containing over 200 genera with close to 2,300 species.  5 petals, 5 sepals, bracts (modified leaves located at bottom of the flower), numerous stamens fused together as a column, pistil. The ovary is superior, with axial placentation. Capitate or lobed stigma. The flowers have nectaries made of many tightly packed glandular hairs, usually positioned on the sepals. The flowers are commonly borne in definite or indefinite axillary inflorescences, which are often reduced to a single flower, but may also be cauliflorous, oppositifolious or terminal. (Examples: hollyhock, okra, globe mallow, Hibiscus)

Sunflower or Aster family is an exceedingly large and widespread family of vascular plants.[3] The group has more than 22,750 currently accepted species, spread across 1620 genera and 12 subfamilies. Composites of many small flowers in disk-like flowerhead. Stigmas, 5 stamens fused around pistil, 5 petals fused together, pappus hair sepals, ovary. Even the petals are individual flowers. Each seed is produced by a single tiny flower. Multiple layers of bracts are common. (Examples: Dandelion, sunflower, asters, dahlia, Chrysanthemum, Gerbera, Calendula, Dendranthema, Argyranthemum, Dahlia, Tagetes, Zinnia).

Rose family Rosaceae (the rose family) are a medium-sized family of flowering plants, including about 2830 species in 95 genera. Roses can be herbs, shrubs or trees. Most species are deciduous, but some are evergreen.[2] They have a worldwide range, but are most diverse in the northern hemisphere. Arrangement of flowers is radially symmetrical and almost always hermaphroditic. Rosaceae generally have five sepals, five petals and many spirally arranged stamens. The bases of the sepals, petals, and stamens are fused together to form a characteristic cup-like structure called hypanthium. They can be arranged in racemes, spikes, or heads, solitary flowers are rare. (Examples of rose family includes many fruit varieties life apple, cherry, plum chokecherry as well as wild and domesticated roses)

There are several other families of flowers that I will explore in the future but for a full breakdown of all the flowering plant families check out Thomas Elpel’s book “Botany in a Day, The Pattern Method of Plant Identification”. He covers all the plant families including those I did not identify today such as : Heath family, Pyrola family, Indian Pipe family, Primrose family, Hydrangea family, Gooseberry family, Stonecrop family, Saxifrage family, Gentian, Dogbane, Milkweed, Nightshade, Morning Glory, Pholx, Waterleaf, Borage, Verbena, Plantain, Olive, Figwort, Broomrape, Bladderwort, Harebell, Madder, Honeysuckle, Teasel, Arrowhead, Arrow Grass, Water nymph, Pondweed, Spiderwort, Rush, Sedge, Grass, Cattail, Duckweed, Arum, Lily, Iris, and Orchid.

INFLORESCENCES – BRANCHING PATTERNS OF STEM OF THE FLOWER

An inflorescence is a group or cluster of flowers arranged on a stem that is composed of a main branch or a complicated arrangement of branches. Strictly, it is the part of the shoot of seed plants where flowers are formed and which is accordingly modified. The types of arrangements include: the spike, the raceme, the panicle, the umbel, the composite, the corium, capitulum and the thyrse. (Please see graphic of these patterns).

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx:The whorl of sepals on the outside of a flower is referred to as the calyx.
    • Corolla: The whorl of petals is called the corolla.
    • Filament: The filament provides support for the anther in the stamen.
    • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
    • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
    • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
    • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Lucas N. Joppa, David L. Roberts, and Stuart L. Pimm,(2010) How many species of flowering plants are there? Proceedings of the Royal Society of Biological Sciences, Proc. R. Soc. B doi:10.1098/rspb.2010.1004 Published online: http://rspb.royalsocietypublishing.org/content/early/2010/07/07/rspb.2010.1004.full.pdf+html  viewed online April 26, 2012

Wikipedia – Flowering plants – http://en.wikipedia.org/wiki/Flowering_plant Viewed on the internet on 4-28-2012

NEXT TIME:  Pollination and the Sex Life of Flowers

Read Full Post »

Who came first?

“Animals are something invented by plants to move seeds around. An extremely yang solution to a peculiar problem which they faced.”
-Terence McKenna

Read Full Post »

The White Oak (Quercus garryana)

Oregon White Oak

THE OREGON WHITE OAK (Quercus garryana)

When I look across the skyline I still see the White Oak. These trees have been here in Cascadia for thousands of years. The acorns of the White Oak were an important food source for native peoples. Where ever you find these trees you will also find a vast ecosystem of food, healing plants and pronounced animal, insect and plant communities. For instance, if you look up into the branches of the White Oak in the fall and winter you will see mistletoe, at its base you will find small herbs, sweet flowered ground covers, and sumac (also known as poison oak).

When European settlers first arrived in Cascadia they found most of the valley’s of Western Oregon and Washington filled with White Oak forests. The trees are found on dry, rocky slopes of bluffs sometimes on deep rich, well-drained soil and low elevations. As you head south from Eugene, the species of oak trees are slightly different and they are named “Black Oak”.

The White Oak tree is recognizable by is deeply round-lobed oak leaves and it’s light grey bark, with thick furrows and ridges. The tree can grow to be 100 feet or taller.

The acorns of the White Oak were eaten by the local First peoples such as Salish and Kalapuyan, Chehalis, and Nisqually peoples. They harvested the acorns, soaked them to remove the bitter tannin, and pulverized them into a type of flour. These acorns were easy to store through the winter and were not prone to spoilage by mold, moisture or cold. The food from the acorn mash was high in proteins, carbohydrates and nutrients.The Chehalis roasted the oak acorn on a fire. Some first peoples buried the nuts in baskets in the mud of sloughs all winter and ate them in the spring. (Gunther 1945)  All acorns contain large amounts of protein, carbohydrates and fats, as well as the minerals calcium, phosphorus and potassium, and the vitamin niacin. Total food energy in an acorn also varies by species, but all compare well with other wild foods and with other nuts. (Wikipedia: acorns). It is important to remove tannins by soaking overnight in water. Since tannins, which are plant polyphenols, interfere with an animal’s ability to metabolize protein, it is important to remove them before consuming the acorn.

The First Peoples of Cascadia had many uses for oak including making combs, digging sticks and used as fuel.(Turner 1979). And of course, mistletoe is found in the branches of oak.

The bark of the White Oak was one of the ingredients in the Saanich  and Cowlitz “4 barks” medicine used against tuberculosis and other ailments (Turner and Hebda 1990).

Creatures that make acorns an important part of their diet include birds, such as jays, pigeons, some ducks and several species of woodpeckers. Small mammals that feed on acorns include mice, squirrels and several other rodents. Such large mammals as bears, and deer also consume large amounts of acorns: they may constitute up to 25% of the diet of deer in the autumn.

If you live in Portland, there is a beautiful specimen of the White Oak in a park near People’s co-op off of Powell street and 22nd avenue. Go sit under this tree and prepare to be taught. It is the mother of many trees in Portland. I found true grounding under this tree.

References

Gunther, Erna (1945) Ethnobotany of Western Washington: The knowledge and use of indigenous plants by Native Americans,University of Washington Press.

Turner, Nancy J.(1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum Press, Victoria, Canada

Turner, N.J. and R.J. Hebda. (1990)  Contemporary use of bark for medicine by two Salishan native elders of southeast Vancouver Island. Journal of Ethnopharmacology 229: 59-72
“respiratory ailments were treated with bark of Abies grandis, Arbutus menziesii, Cornus nuttallii, Prunus emarginata, Pseudotsuga menziesii and Quercus garryana;”

Read Full Post »

Oregon White Oak

Plants as Teachers

If you are looking for a good teacher for learning about plants, look to the plants themselves. All knowledge that would lead us to live rightly on the Earth can be found in its plants.  You only need to possess excellent powers of observation and do what the plants ask you to do. If you know and understand the plant teachers, you will never be hungry, unsheltered, or unclothed. You will surely be a person who lives a prosperous, abundant life.

You have only to go outside and look about you.  If you spend enough time observing the plants, you will learn that they live in systemic communities.  Each plant lives in its own network of fellow plants that provide support and help attract nutrients and pollinators. Humans could learn from these communities, but many humans hold themselves above or apart from nature.

While you are outside, look out to the horizon if you can, and take note of the most prominent plant. Perhaps you see a giant white oak, which was once plentiful and extremely valuable to human survival for thousands of years in Cascadia.  If you live in the forest and cannot see the horizon, look up.  You will see the teacher trees, the mother plants, and their surrounding network of supporting plants. When humans slice away this support through such practices as clear-cutting, slash-and-burn procedures, and use of chemical herbicides, they put plant communities and other biological communities at risk. We must remember that we are all connected; we must hold each other up.

Plants have not forgotten that we are all part of the same community.  When we enter a plant community, the plants will try to heal us and restore us and bring us to a state of balance. What we need to learn is how to recognize  the healing that is occurring and give it support through our actions and the way we care for our bodies and minds.

In research conducted by entomologists Karban and Baldwin of the Wageningen Agricultural University in the Netherlands, plants were found not to be passive organisms at all.  The research challenged the human idea that because plants are firmly rooted in the soil and cannot run away from their enemies, they have long been considered passive in interactions with other organisms.

After decades of research on plant pathogen and plant herbivore interactions, the scientists found that plants take an active role in adapting to adverse conditions.” (Induced Responses to Herbivory  [page 83]).

One of my favorite passages in Stephen Harrod Buhner’s book, The Lost Language of Plants: The Ecological Importance of Plant Medicines to Life on Earth is a story about the interaction between deer and plants in a meadow.

Harrod Buhner writes about researchers asking the question, why don’t deer eat meadow plants down to the root when grazing? The researchers watched a meadow for several seasons, taking all sorts of samples.  In the end they found that the plants themselves control the deer, sending off an aroma and plant chemistry that signal the deer to eat, and then, when the deer have eaten just to the tops of the stems, emitting a bitter chemical that causes the deer to stop eating.  Both plant and deer are healthier for the grazing: the plant receives a good trimming that allows it to build better plant structure, and the deer receives nutrients.  What is most amazing in this story is that the plant is able to switch its chemical output almost instantaneously.

Now if all this is true, why would you, a human, be surprised that when you enter a forest, the plants want to bring you to a state of balance in their community?

Plants teach and compel and push us to return to our true nature and our place in the surrounding community.  When we walk in the forest and we are covered by synthetic chemical smells–smells of plastic and petro and synthetic hormones and medicines–the plants will rain down upon us a curtain of plant substance chemicals. The plants will clean the air and water for us and try to reconnect us to the earth. The community we belong to is connected to all living and nonliving things on this planet. Until we find our way back to living balanced and harmoniously within the tapestry of life, we will continue to feel disconnected and dis-eased. Don’t believe me?  Go into the forest and find a Western red cedar. Sit under the tree for an hour and see how you feel.  You will not only feel changed biologically and psychologically, you will feel connected to the place.

Original post to Portland Indymedia on January 19, 2008 – you can view original with comments at this link


Read Full Post »