Feeds:
Posts
Comments

Posts Tagged ‘plant evolution’

Around every flower is the sweet fragrance of scented air. This field of fragrance is the flower’s soul. The soul is not just inside the flower. The flower lives inside the soul.  As we do.”  Tom Cowan – Yearning for the Wind.

Flower dreams – by Ellen O’Shea

How is it that flowers can be such powerful healers?  What is in the plant and the flower that creates bio-chemical and vibrational substances that affect all of nature, all of us?

For years I used the Bach Flower remedies for emotional healing.  I often gave them to my children during emotional imbalance.  When they were teenagers they questioned whether these flower remedies did anything at all.  As a parent I did not research how it worked I just told them I knew it worked because I was brought back to balance after ingesting a flower essence.  My children were highly suspect of my “whooy whooy” beliefs.  They wanted evidence that the flower had such power to heal.  I wish now that I would have accommodated them.  I wish that I had done the science.  They were learning discernment and that is a good thing.  I dedicate this blog entry to my three beautiful daughters.  Without them I would not have been compelled to ask the deeper questions about plants, nature and the human connection to all things.  20 years ago there was not access to all the research and ideas that are available now.  Now I do the deep search.

So I venture.  What I am finding is amazing and essential for all of us to know if we are going to heal ourselves and the planet.

Observation: The smell of the flowers stimulates the parts of the brain that produces emotions. How does that happen?

For instance- Citrus helps alleviate depression. Smelling a wild rose causes me to feel more stable and clear-thinking.  How does this happen? My inquiry has led me to many wonderful teachers in the last few weeks.  Some long gone such as Bach and Meeuse.  Some plant teachers I contacted are very much alive and teaching thousands of people to reconnect with the healing ability of the flowers and the plants.

Let us begin…

 “Animals are something invented by plants to move seeds around. An extremely yang solution to a peculiar problem which they faced.” Terrance McKenna (an ethnopharmacologist)

According to Bastian Meeuse, 25 million years ago flowers appeared, they had just emerged from the oceans and had somehow trained primitive fleas and beetles to transport pollen from flower to flower.  The insects and other pollinators craved the nectar and other food produced by the plants.  And (this is very important) the plants and pollinators EVOLVED together.  We humans also EVOLVED with the plants. And these plants including the flower have become our food, our medicine and our evolutionary neurotransmitters.

As the plants evolved and survived many challenges, so did humans. For thousands of years human healing involved bringing awareness to our bodies, to its unique reactions and processes, and to its symptoms and strengths.  This awareness brought us to growthful insight and we pursued this healing in partnership with plants.  In describing this ability to heal, I am describing a human who is at the peak of performance in body, mind and spirit and wellbeing.  This ability to be healthy has always been influenced by plant-based food and medicine.

It has been only in the last 100 years that we humans in the Western world have moved in mass away from a plant based diet and plant based medicine.  During the great purge of Europe in the 1500’s and beyond, millions of healers were killed for what they knew about plant healing.  That mentality was brought to the Americas and is flourishing today in Western medicine.  It is with great effort that the First People’s have kept flower and plant healing alive in the U.S.  Our brothers and sisters to the south in the other America’s have developed great societies of plant healers.  The healing power of the flower is just now being explored by the West through a growing number of herbalists.  More and more people in the US and Europe are exploring plant based nutrition and healing.

Many cultures in the Far east and India still have long-held knowledge of how to heal with plants and how to heal with flowers.  I will explore a couple of those modalities.

How can a flower influence healing? Western Science has just now begun to ask the important questions about how plants heal humans and why the healing mechanism cannot be synthesized into chemical compounds. These questions have been asked and answered in the healing modalities of the East and far-east. Western science has been dissecting the process of how plants heal humans by constructing studies based on the scientific method.

FLAVONOIDS A WESTERN STUDY

One such study looked at flavonoids found primarily as the pigments responsible for the autumnal burst of hues and the many shades of yellow, orange, and red in flowers and food.  These flavonids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems, flowers, as well as tea and wine.  Over 4000 structurally unique flavonoids have been identified in plants.  Eastern cultures have used these plants high in flavonoids for healing for thousands of years.  According to the study, a resurgence of interest in traditional Eastern medicine during the past two decades, together with an expanded effort in pharmacognosy, has rekindled interest in the flavonoids and the need to understand their interaction with mammalian cells and tissues. (Middleton, Kandaswami, and  Theoharides 2000).

In general these flavonoids must be ingested from plant tissue and then they interact with the bacteria in the gut to affect change in the body.  But some flowers also affect flavonoid changes through aroma and biochemistry. So, merely smelling a flower may cause chemical changes in the body.

Other studies have found that a diet rich in fruits and flowers also cause the brain to develop differently, increase its size, provide high levels of DHA and demonstrate powerful endocrine altering properties such as hormones. This diet may be responsible for the evolutionary changes in brain capacity over millions of years. A move away from this diet in the last 200 years is beginning to produce a human brain that is shrinking. Human evolution in the tropical forest may have strongly affected the development of the human brain (Gynn and Wright 2008).

St John’s Wort flowers

St John’s Wort is a plant whose flower is coveted for its healing abilities. The St John’s Wort (Hypericum perforatum; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics.  Hypericum perforatum L. (St. John’s wort) is a representative of the Clusiaceae family with confirmed therapeutic effects on burns, bruises, swelling, anxiety, mild to moderate depression, antidepressant, antiviral, wound healing, analgesic, hepatoprotective, antioxidant and antimicrobial activity.

At first western scientists disputed the ability for this flower to heal.  However recent studies have found that the plant extract contains Naphtodianthrones.   Naphthodianthrones such as hypericin and pseudohypericin are predominant components in St. John’s wort extracts, and most St. John’s Wort phytomedicines are currently standardized according to their hypericin content. These chemicals are localized in dark glandular structures mainly located on the margins of St. John’s wort leaves and flower petals and appear to serve in the defense against insect herbivory.  Although there is some evidence that biosynthesis of St. John’s wort naphthodianthrones involves the polyketide pathway, the production of napthodianthrones in St. John’s wort can be influenced by environmental factors such as light and soil mineral nutrients (Briskin 2000).

FLOWER PHYSIOLOGY AND HEALING BIO-CHEMICAL PIGMENTS

The floral meristem cells  such as those found in flowers can be described as tiny cellulose boxes on the inside and a thin layer of protein plasma that surround the large central vacuoles. The structure holds a mass of water that holds in solution a whole array of chemical compounds such as sugars, plant acids, salts and often pigments. The pigments are very healing to the human body.  Here are three pigments found in flowers that promote health.

  • Anthocyanins – (flower + blue) are water-soluble vacuolar pigments that may appear red, purple, or blue depending on the pH.  Eaten in large

    Anthocyanins- Anthoxantins – Betacyanins flowers

    amounts by primitive humans, anthocyanins are antioxidant flavonoids that protect many body systems. They have some of the strongest physiological effects of any plant compounds, and they are also things of beauty: anthocyanins provide pigment for pansies, petunias, and plums.  Anthocyanins are the active component in several herbal folk medicines such as bilberry (Vaccinium myrtillus), which was used in the 12th century to induce menstruation and during World War II to improve British pilots’ night vision. Scientists are now discovering how such anthocyanins work and are beginning to appreciate their health benefits.

  • Anthoxantins – are water-soluble pigments which range in color from white or colorless to a creamy to yellow, often on petals of flowers. These pigments are generally whiter in an acid medium and yellowed in an alkaline medium. They are very susceptible to color changes with minerals and metal ions, similar to anthocyanins. As with all flavonoids, they exhibit antioxidant properties, and are important in nutrition. Anthoxanthins may contain allicin which is good for lowering cholesterol and blood pressure.
  • Betacyanins- Betalains are a class of red and yellow indole-derived pigments found in plants of the Caryophyllales, where they replace anthocyanin pigments. Betalains also occur in some higher order fungi.  They are most often noticeable in the petals of flowers, but may color the fruits, leaves, stems, and roots of plants that contain them. They include powerful antioxidant pigments such as those found in beets.

NUTRITIONAL BENEFITS OF FLOWERS

Flowers have many nutritional benefits for humans and pollinators.  They have nectar, nutritious tissues (yes you can eat many flowers), volatile oils, waxes, resins and perfumes.

Pollen is a highly nutritious well-balanced food and medicinal substance found in flowers.  Pollen contains a sizable amount of protein, starch, sugars, fat or oil, minerals, antioxidants, and vitamins such as thiamin. It is also rich in free amino acids.  Some flowers have food hairs that contain protein and fat.

Nectar- a solutions of readily digested sugars that also contains amino acids, vitamins and minerals.  Most nectar contains glucose, fructose and sucrose in a base of minerals and oil. Pollinators are highly attracted to nectar and for most this is their main food source.  Also there are whole groups of yeasts that thrive in nectar. Some yeasts produce a enzyme, invertase or sucrase, which splits sucrose.  Honey-bees also possess this enzyme and consequently honey contains no sucrose. Now this yeast is very healing to the human gut and is also is the primary substance in the making of Mead.

MEAD-
From the bonny bells of heather,
They brewed a drink long-syne,
Was sweeter far than honey,
Was stronger far than wine.
They brewed it and they drank it,
 And lay in blessed swound For days and days together In their dwellings underground.

– R.L. Stevenson Heather Ale

Mead is a alcoholic drink long loved by humanity.  The drink is made from honey that has been allowed to ferment.  The addition of natural pollens in the drink has long been known to acclimate humans to their local environment.  Hence fewer allergies.

Nectar is collected by honey bees and is digested. The bees add enzymes, and transfer the nectar to a honey stomach from which it is regurgitated into cells in the comb when they return to the colony. Additional enzymes are added, the cells are hermetically sealed, and the honey is then permitted to “ripen,” meaning that the enzymatic activity occurs which gives the honey its final sugar blend.

INHIBINE

Since ancient times, the antibiotic effects of honey have been recognized by the medical community. – In 1937 Dold[11] and others measured and documented the effect, and called it “inbibine”. 25 years later, Dr. Jonathan White and others isolated the exact cause of the anti-bacterial effect: the glucose oxidase in the honey produces hydrogen peroxide as it acts on glucose to produce gluconolactone (gluconic acid). This enzyme is heat sensitive, and concentration varies with floral type.  Mead and honey also add to healthy human gut flora if brewed correctly. Some flowers offer fatty oils (glycerides) instead of sugary nectars to visiting bees. One such flower is the Vanilla Orchid.

vanilla Planifolia

VANILLA PLANIFOLIA – A FLOWER OF THE GODS

Vanilla planifolia is a species of vanilla orchid. It is native to Mexico, and is one of the primary sources for vanilla flavoring, due to its high vanillin content. The oil found in the Vanilla flower is a powerful healer to humans.  It is an antioxidant, aphrodisiac (This oil stimulates secretion of certain hormones like testosterone, estrogen etc.), febrifuge: The vanilla oil can effectively reduce fever by fighting infections due to presence of components like Eugenol and Vanillin Hydroxybenzaldehyde in it.  Being a sedative, it also reduces inflammation due to fever (Anti Phlogistic would be the right word for it) and this also contributes to reducing fever. It is a known antidepressant, tranquilizer and equalizer for your emotions.

AROMATHERAPY

Aromatherapy uses the olfactory  and skin of the human body to transmit the aroma of a flower.  Each essential oil when administered takes into consideration ones physiological state and physical state, healing both simultaneously.  The path of healing is mostly thought to be biochemical.

THE ESSENCE OF FLOWERS

Now this is all good knowledge of flower healing but what about flower essences?  How do they work?

This one is harder to answer, but because of the work of many healers, the science of quantum physics humanity is getting closer to answering that question.  But we must start with the master of flower essences in the west – Edward Bach

EDWARD BACH AND THE BACH FLOWER REMEDIES

Edward Bach

Edward Bach lived from September 24, 1886 – November 27, 1936.  He was a British physician, homeopath and spiritual writer, best known for developing a range of remedies called the Bach flower remedies, a form of alternative medicine inspired by classical homeopathic traditions.

From Wikipedia:

“Rather than being based on medical research, using the scientific method, Bach’s flower remedies were intuitively derived  and based on his perceived psychic connections to the plants.  If he felt a negative emotion, he would hold his hand over different plants, and if one alleviated the emotion, he would ascribe the power to heal that emotional problem to that plant. He believed that early morning sunlight passing through dew-drops on flower petals transferred the healing power of the flower onto the water, so he would collect the dew drops from the plants and preserve the dew with an equal amount of brandy to produce a mother tincture which would be further diluted before use.   Later, he found that the amount of dew he could collect was not sufficient, so he would suspend flowers in spring water and allow the sun’s rays to pass through them. He observed that certain flower essences affected emotional healing- that is he could reverse strongly negative emotions by prescribing a certain flower essence.  Bach thought of illness as the result of a conflict between the purposes of the soul and the personality’s actions and outlooks. This internal war, according to Bach, leads to negative moods and energy blocking, which causes a lack of “harmony,” thus leading to physical diseases. (Larimore 2004, Robson 2007). ”

FLOWER CRYSTALINE PATTERNS – THEY KEY TO ESSENCES

Just exactly how do the flower essences work?

Edward Bach wondered if the health properties of various herbal remedies might be due more to their radiant energy than to their chemical properties. This led Edward Bach to look closer at the energetic properties of plants and flowers and ultimately led the development of the flower essences and his flower remedies which are homeopathic in nature.  The base of homeopathy is that the essence of the flower, or root, or bark, is transferred to the water or alcohol it is dissolved in. That is to say, the radiant frequency is transferred.

We already know that water can be made to radiate and this property is not lost even at the million to one dilutions of the homeopathic pharmacy. Specifically, the effect of the plant infusion must mimic the symptoms of the patient.

RADIANT WAVE LENGTHS

Of great interest to me is the findings of Andre Simonton, that foods radiate at certain wave lengths depending upon a number of factors, one being the freshness of the food, another being the vitality of the food. Understanding that every particle down to a photon of light has a specific wave length and that these minute wave lengths can be measured by modern methods lets us qualify foods in real time. Fresh milk measures at 6,500 angstroms but loses 40% of its radiation at the end of 12 hours and 90% at the end of 24. Pasteurization killed the radiation completely. The same is true of fruit juices and garlic juice, when pasteurized, coagulates like blood and has no radiation.  Frozen foods retain their radiation when thawed, foods in the refrigerator tend to acquire more radiation as they mature and dehydrated foods are re-vitalized when rehydrated.  Water has the same property. Some water, as that at Lourdes, radiate at 156.000 angstroms and, taken away in a bottle, eight years later still measures 78.000 angstroms. Some vegetables have higher radiation when raw but some, like potatoes, are higher when cooked.

Next I contacted Herbalists that I know and asked them to explain the flower essence healing capacity to me.  Are flower essences active healers because they possess volatile oils of the flower that affect neural pathways in the brain that in turn affect emotional centers found in the brain?

No, I found flower essences act very differently.

According to several different herbalists they act on a energetic level, on the quantum physical level affecting chemical structures found in our bodies.  According to Steven Horne a Herbalist with www.treelite.com. ( I am currently studying with Steven and find his months-long online class on “Botany for Herbalist” to be incredibly helpful to my botanical journey).

Steven says: “Flower essences are homeopathic-like. It is believed that homeopathic remedies work because water forms crystalline patterns (has a crystalline structure) which can hold the “frequency” of a substance.  The body reacts to the frequency of the remedy, which alters the body’s own water structure patterns. It is a physical thing, but not a chemical thing.”

Plant chlorophyll vs human blood hemoglobin life force fluids

The human body is composed of many crystalline substances—the bones, blood, brain and DNA are crystalline in structure; even on a molecular level, our cells contain the same molecular silica as is found in natural quartz crystal. In effect, the human body and the plant body have much the same molecular structure because we evolved, and survived together.  The healing of our bodies is dependent on connecting on the most molecular, energetic level in order to thrive and continue to evolve. The plants are a tuning fork for our own crystalline structures.  A flower essence is the song the tuning fork plays.

AYURVEDIC MEDICINE AND PLANT EXTRACTS

Next, I contacted Nicole Telkes lead instructor at the Wildflower School of Botanical Medicine. Nicole reports that the Ayurvedic philosophy of healing can also explain how the flower essences work. She reports that the Indian medical system of Ayurveda is based on the belief that plants have many medicinal properties. Many medicines are made by combining the extracts of plants to cure many ailments.

Nicole writes: “How the flower essences work…as a vitalist, that is a hard concept to show on paper. It is experiential. How they work depends on your philosophy of healing. Essences are an entirely different ball game than herbal medicine–except in concepts in of vitalism. Strictly speaking, you could say that the plant’s aromatics, mucilage and other constituents create response in the body but many of us believe it is much more than that, especially with essences which use no measurable amount of plant material.

Nicole goes on to explain, “Western Herbalism does have energetics, it just became lost and masked in terminology as herbalism was somewhat absorbed into allopathy. It’s the entire medical system in the U.S. that lost the energetic classification system and humoral system. You can look thru Greek medicine and folks healing throughout the U.S. and the energetic system is still there–you just have to look harder.”

Nicole offered this description of Yurvedic healing: “Yurvedic Concepts: everything in the world is ultimately composed of five Bhutas (elements) – prithvi (earth), apa (water), teja (fire), vayu (air) and akash (ether). Ayurveda strictly adheres to this concept called the Panchbhuta theory. The five parts of plants in Ayurveda show how plant structure is related to five elements. The root corresponds to earth, as the densest and the lowest part, connected to the earth. The stem and branches correspond to water, as they convey the water or sap of the plant. The flowers correspond to fire, which manifest life and color. The leaves correspond to air, since through them the plant breathes and the wind moves the plant. The fruit correspond to ether, the subtle essence of the plant. The seed contain all five elements, containing the entire potential plant within itself.”

In his book “Radical Healing”, Rudolph Ballentine, MD. describes his experiments with the flower essences. He is a graduate of Harvard, a psychiatrist and he studied medicine in India. He has prescribed flower essences and other herbal remedies to his allopathic MD friends and gives detailed accounts of the results plus a great many other detailed accounts on herbs in his book. Dr Ballentine reports that flower essences work on the principle of vibrational medicine and they convey complex informational patterns directly from nature that can be used by the human system to reprogram the body and the mind.

We can’t really ignore the fact that living matter is filled with information. It’s an incredible storage medium for information. In fact, I’m told that researchers in the area of computers, the forward-looking people in Silicon Valley, are really looking toward abandoning silicon as a storage medium for computer microprocessors, and are thinking of moving toward living protoplasm – bacterial cultures and so forth, because they can hold such an incredibly larger amount of information.

You see, all living matter is an infinite library of information about life and how to live on this planet. And we’ve barely entertained the possibility of how to harness this information. Natural medicinals have been doing it for a long time but it wasn’t referred to in these terms. Now we’re beginning to realize how sophisticated these ancient techniques are. They’re not just superstition. They’re really quite elegant and quite advanced. I leave you with a beautiful video about Edward Bach created by the Bach remedies Foundation:

The Bach Flower Remedies- The Journey to Simple Healing Part 1

The Bach Flower Remedies- The Journey to Simple Healing Part 2

REFERENCES

  • Ballentine, Rudolph (1999)  Radical Healing: Integrating the World’s Great Therapeutic Traditions to Create a New Transformative Medicine, Three Rivers Press, New York, NY
  • Bach, Edward (1931) Heal Thyself, The Explanation of the real cause and cure of disease. CW Daniels, London – Republished electronically in 2003 by the Bach Flower Research Program at http://bachtherapy.org/Books/Heal%20Thyself%201931.pdf
  • Briskin, Donald (2000) Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health, Plant Physiology October 2000 vol. 124 no. 2 507-514
  • Dold, From Crane, E., Honey, A comprehensive Survey, Heinemann, London, 1979.
  • Ernst, E. December 30, 2002. “Flower remedies”: a systematic review of the clinical evidence”. Wiener Klinische Wochenschrift 114 (23-24): 963-966. Flower essence repertory – P Kaminski  – http://www.flowersociety.org/repertory/repertory.pdf
  •  Gynn, Graham and Wright, Tony (2008) foreward by Dr. Dennis McKenna – Left in the Dark-Tropical forest biochemistry, the driving force in human evolution. Ingrams and Baker & Taylor publisher, London, UK
  • Horne, Steven interview on via email on 6/13/2012  Steven H. Horne, RH(AHG) www.stevenhorne.com www.treelite.com  www.modernherbalmedicine.com
  •  Larimore, Walt; O’Mathuna, Donal (2007). Alternative Medicine: The Christian Handbook, Updated and Expanded (Christian Handbook). Grand Rapids, Michigan: Zondervan. pp. 293. ISBN 0-310-26999-7.
  • Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers – Facts on File Publication, Rainbird Publishing Group, London, England
  • Middleton,Elliott Jr. Kandaswam, Chithan and Theoharides, Theoharis C.(2000) The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer, Pharmacological Reviews December 1, 2000 vol. 52 no. 4 673-751 http://pharmrev.aspetjournals.org/content/52/4/673.long viewed on the internet 6-10-2012
  • Pintov S., Hochman M., Livne A., Heyman E., Lahat E. 2005. “Bach flower remedies used for attention deficit hyperactivity disorder in children – a prospective double blind controlled study”. European Journal of Paediatric Neurology 9 (6): 395-398.
  • Robson, Terry (2004). An Introduction to Complementary Medicine. Allen & Unwin Academic. pp. 184–185. ISBN 1-74114-054-4.
  • Telkes, Nicole – Wildflower School of Botanical Medicine – http://www.wildflowerherbschool.com/
  • Walach H., Rilling C., Engelke U. July 2001. “Efficacy of Bach-flower remedies in test anxiety: a double-blind, placebo-controlled, randomized trial with partial crossover”. Journal of Anxiety Disorders 15 (4): 359-366. White, J.W.Jr.,et al., Composition of American Honeys, USDA Technical Bulletin #1261, 1962.
  • White, J.W.Jr., Honey, Adv Food Res., 24:287-374, 1978.

Read Full Post »

PLANT BLINDNESS is a modern phenomenon whereby humans walk through their world each day and do not notice plants, nor do they know the name, the physiological, ethnobotanical, herbological or ecological connection between themselves and plants.”

Evolution of Plants

First off you should know I am not a scientist.  I am a naturalist.  My knowledge of plants comes from a personal relationship and constant observation and study.  I read everything I can find, including the works of various plant and biological scientists.  I forage for plants and use them as food, utility, medicine, and spiritual growth.  I am teaching from what I know  and what I am learning and offer what I know as one method of connecting with the plant “kindom”.  Yes, KINDOM.  Kindom is different from the hypothesis of Kingdom, which is hierarchical in organization.  Kindom, is different – the hypothesis put forward by the likes of plant specialist and scientist Dr. Alan (Mushroom) Kapuler – says that plants and animals and all species all need each other for survival.  There is not a higher group organization, rather all species interact and need each other in cooperation. Relationships between all species is not competitive but cooperative.

Here is a link to Kapuler’s web blog for further discussion of cooperative relationships between species:

http://mushroomsblog.blogspot.com/2005/01/descriptions-from-dr-kapulers-peace.html

WHY DO YOU NEED TO KNOW BOTANY?

Why do you need to know botany?  Because my goal is to allow each and every one of you to go into a natural area and identify every plant.  A goal that will only be reachable if you are well versed in Botany and plant identification.

Do you know that the connection between humans and the natural world is breaking down so fast that we now have a definition for humans that are disconnected from plants.  It is called “Plant Blindness”.  PLANT BLINDNESS is a modern phenomenon whereby humans walk through their world each day and do not notice plants, nor do they know the name, the physiological, ethnobotanical, herbological or ecological connection between themselves and plants.

It is my hope that you will learn all about plants on this Radical Botany blog and it will be taught in a way that you can easily absorb and apply to your life as a plant lover, naturalist or budding scientist.

So let us begin.

Botany is the study of plants.  It is a scientific process whereby plants are examined from the cellular to the ecological levels.  A scientist who studies Botany or plants are called a botanist.  A plant lover can also be called a naturalist, a gardener, a horticulturist, or one of my favorite “a tree hugger”.  Unabashedly I am a tree hugger and a naturalist.

WHERE DO PLANTS COME FROM?

According to the theories of science,  hundreds of millions of years ago, tiny specks of protoplasm appeared on earth in the ancient seas,  and were the beginning of all our plants and animals.  The protoplasm specks – a one cell organism that became plants developed thick walls and developed the green coloring matter as chlorophyll which enabled them to make food from substances in the air, water and soil.  Slowly over time the plants were able to leave water and adapt to land growing and producing multi-cell organisms.

In the past botanists regarded plant as meaning a multicellular, eukaryotic organism that generally does not have sensory organs or voluntary motion and has, when complete, a root, stem, and leaves.  However this is a better description of vascular plants.  Some plants have no roots, stems or leaves.   And, plant-like organisms such as kelp are actually from the order Laminariales.

Let me go out on a limb here (pun intended) and make this statement about plants: they are alive versus being parasitic and not alive.

A second characteristic of a plant it is that it refers to any organism that is photoautotrophic—produces its own food from raw inorganic materials and sunlight.  However, Blue-green algae and certain bacteria and cynophytes are photoautotrophic and are not classified as plants.

The same is true for mushrooms.  A mushroom- the fruiting body of a fungus (Kindom Fungi)  is not considered a plant. It is closer to the animal kingdom.  A mushroom is not photoautotrophic at all, but saprophytic for the most part however, some fungi and bacteria is parasitic.

Traditionally, all living things were divided into five kingdoms:

MoneraProtistaFungiPlantaeAnimalia

I know, I know – scientists are now trying to say there are only three kingdoms: ArchaeaEubacteriaEukaryota and these kingdoms reflect whether the object of study has a cell wall or not.  I prefer to work with the five kingdom (or Kindom) system because it allows us to generally differentiate between major groups of living organisms.

So let us say that plants are part of the kindom Plantae.  Plants include familiar organisms such as flowering plants, conifers, ferns, mosses, and green algae, but do not include seaweeds like kelp, nor fungi and bacteria.

Plants can be grouped as follows:

First informal group – GREEN ALGAE

Green algae Division name: Chlorophyta and Charophyta of which there are between 3800 and 4300 species

Second Informal Group – BROYPHYTES – land plants that do not have true vascular tissue and are therefore called non-vascular plants.

Bryophytes : Marchantiophyta also called liverworts of which there are between 6,000 and 8,000 species.

BryophytesAnthocerotophyta also called hornworts of which there are between 100 to 200 species

BryophytesBryophyta also called mosses of which there are about 12,000 species

Third Informal Group of plants -PTERIDOPHYES- The pteridophytes are vascular plants (plants with xylem and phloem) that produce neither flowers nor seeds.

PteridophytesLycopodiophyta also called Club Mosses of which there are approximately 1,200 species

Pteridophytes: Pteridophyta also called  ferns, whisk ferns and horsetails of which there are approximately 11,000 species.

Fourth Informal Group of Plants: SEED PLANTS

Seed plants: Cycadophyta also known as cycads of which there are 160 known species

Seed Plants: Ginkgophyta also known as ginkgo of which there is one known species

Seed Plants: Pinophyta also known as conifers of which there are 630 known species

Seed Plants: Gnetophyta  (woody plants) also known as gnetophytes of which there are approximately 70 known species.

Seed Plants: Magnoliophyta also known as flowering plants of which there are approximately 258,650 species

My focus for Radical Botany will be worts, clubs, mosses, ginko, flowering plants and conifers as well as other trees found in the Cascadian bio-region: An area that includes British Columbia, Washington State, Oregon State, and Northern  California.

Next time: Cell structure of Plant Groups: flowering plants and conifers

Read Full Post »

When I was a child growing up on the edge of a white (Quercus garryanna) oak forest in Oregon I loved to collect the wild seeds of native plants. I was attracted to their great beauty, unusual design, and uniqueness. I was fascinated by their shapes, sizes, colors and even smells. They were my special treasures.  I kept a collection of wild seeds in a tin box under my bed away from the prying eyes of my many siblings.  I would often take the box out and pour over my many wild seed “treasures”.

I spent hours collecting, observing, and drawing pictures of the seeds. I had special names for the seeds: “whirligigs” (the samara or winged seed pod of the Acer or Maple tree family),” wishes” (the multi-seed pod of the dandelion),” hooksters” (the hooked seed of the Cleavers), and “boings” (the seed pod of the wild pea or Vetch).

I asked my father, who was a very amazing gardener, why my seeds looked so much different than the seeds we planted in our garden.  He told me that the seeds planted in the garden had been changed by man over many years.  They were hybrids of once wild plants.  He told me that the seed I collected was wild seed. Seed that only nature had touched.

I scanned the Book of Knowledge book set that was in our family’s library looking for information about wild plants and seeds.  I had many questions.  I wanted to know why some seed had tails and seemed to fly through the air; some oozed fluids and were sheathed in pockets of paper-like plant material. Still others were very hard to touch because they were sheathed in very hard outer shells.  I found seed that dropped to the ground and burrowed itself into the earth. Other seed attached itself to animals or my pant leg and later dropped far away from the mother plant. Some seeds used streams and rivers to move through the forest and still others catapulted themselves through the air.

The shapes of the seeds fascinated me. They were not only small, oval or round like the garden seeds, they took many shapes and sizes.  Some seeds were encased in berries; others were encased in cones or grew in long clusters. Some were round, some were square and a large number were geometrically shaped like small geodesic domes.  Every seed was unique and held a mystery within it. Every seed had adapted so it could survive a more or less competitive environment. I learned that plants disperse their seeds because they do not want new plants nearby competing for water, light and nutrients.  The fruits or pods that contain the seeds have adapted to different dispersal methods.  For instance, the acorn of the White Oak has a fruit that looks like a seed, but the outside of the acorn has a tough wall to protect the seed within. When the acorn falls to the ground it rolls away from the parent plant.  The acorn is very attractive to animals.  The squirrel will carry the acorn away and bury it. How convenient that the squirrel “plants” the acorn in the ground.

Some seeds develop coats of paper thin material – capsules and pods. As the pod membrane dries it creates tension and finally the pod will pop open- throwing the seed in all directions (Sweet Vetch and other pea family plants). The paper-like pod is also easily dispersed in the wind.  Some seeds have hooks – much like Velcro that allows the seeds to attach themselves to animals and people to be carried away.

In fact the inventor of Velcro Swiss engineer, Georges de Mestra was said to have studied the mechanism of a common burr to come up with the idea for his amazing invention.

One year I took half my collection and planted the seeds in a small bed of loose soil.  Very little of it germinated. Only some wild grasses came up. None of the wildflowers grew. I was so disappointed.

As always my dad patiently answered my many questions. He told me that wild things are special and unique and cannot easily be captured. He said most die in captivity and cautioned me not to catch the wild frogs or salamanders or try and hatch the pheasant eggs I found in the orchard. My father told me that wild plants also needed special care and in order to germinate the seeds I would have to learn everything I could about the plant first.  He said some seeds have special needs like a long cold spell, or fire or being eaten by a bird.  My father told me that unless we protect the wild plants we may lose our food plants, our forests, our water and our air. He said that all our food and flower plants were hybrids of wild plants. He said that hybrids become harder to grow over time and have to be grown again from wild stock at some time. If the wild stock disappears, so will our easy to grow food sources.  My father had great respect for wild plants. He taught me how to forage for berries and other food.  And he told me the names of the native and wild plants.  It was my father who told me that in the past First Peoples everywhere used wild native plants for everything in their lives.

Because of the general lack of training in biological/botanical training in the schools at that time I decided to learn everything I could on my own through books.  I spent hours in the library reading about plants and learning their mysteries.

I spent a good portion of my life trying to learn about native plants and how to propagate them through direct observation.  Some native plants must be grown from seed and have very peculiar growing habits. In nature only a small fraction of the seeds of plants succeed in germinating and growing to maturity because of the many hazards encountered. Each plant has a peculiar way of making sure it’s seeds will be distributed to safe environments. My own observations from gardening and also working with native plants have taught me that wild seeds flourish in their wild habitat and contribute to a plant community that is exquisite and dynamic. One has only to visit an old growth forest and experience the diversity of life, the mycelium and the healthy web of life to know that wild plants know something we do not yet understand. This is why so many fragile native plants do not do well in people’s yards. To successfully propagate native plants one must understand and create a replica of the environment that the plant came from.

As we move native plants back into our yards, cities and towns we will need to make sure there is enough diversity of plants and we need to keep protecting the wild areas where the plants flourish.

In his essay on the need for diversity in plant and seed life, D.A Albert proposes that creating small areas of plant repositories (plant zoo) can create fragmentation leading to the destruction of whole plant species.

“Habitat destruction and fragmentation by development interrupts normal plant dispersal and gene exchange. In extreme cases, isolation creates highly inbred populations which can have a number of deleterious effects. Highly inbred populations may not have the genetic variability “on the warehouse shelves” to adapt to change. Inbreeding poses additional problems for self-incompatible species. These species can become so inbred that cross pollination between “different” individuals is no longer possible, rendering the population unable to produce viable seed.” (Albert)

THE SPARK OF LIFE

One of the greatest biological mysteries for me when studying seed is how is it that life is generated from a seed?  At what point in its growth do seed grow or die. Where does that spark of life come from?  I was told in my biology classes that that the spark of life starts in the DNA and biochemical material of a plant.  But I also know that scientists do not know where the spark of life comes from. Scientists only have theories and hypothesis to work with and cannot fully prove where the spark begins.

In just the right conditions, the seed will germinate.  Growth occurring as a result sees new life in no obvious way resembling the origin from which it springs. Biochemical reactions cannot explain where the spark comes from. It is truly a great mystery. We are just now beginning to understand that toxins and radiation can destroy that spark or mutate it into a plant that has no chance of survival. We must learn to protect the “spark” of life.

EACH PLANT HAS ITS OWN ENVIRONMENTAL NEEDS

You cannot generalize about any wild plant-or seed for that matter. Each has its own environmental needs. Study, observation and trial and error are the tools of a good naturalist.

For instance many wild plants do not produce seed until fall and few can be expected to germinate within a few days like garden seeds. Some seeds may not germinate for years and many need cold to prepare them for germination.

Seeds from many wild flowers have embryos that are immature when they are shed from the parent plant. An after-ripening period is necessary to overcome the dormancy of such seeds before germination can take place. (Taylor and Hamblin)

Wild seeds may need a cold moist repository for periods from one month to a year according to species (cold stratification). Some seeds have very hard outer coats that require almost two years of stratification. Plants that need this cold stratification include Pacific madrone (Arbutus menziesil).

Some seeds must pass through the gut of animal in order to germinate.  Placing the seeds in a container of hot water can mimic this process.  Here are some directions for this process presented by Washington State University extension service.

“HOT WATER (mimics passage through a stomach or heat from a fire): Boil 3-6 cups of water for every cup of seeds. Don’t use an aluminum pan or softened water, as either might introduce chemicals toxic to seeds. Turn off the heat when it reaches boiling, and let the water cool for a minute or two. Pour the seeds into the water and let them sit at room temperature for 24 hours. Seeds may still need to overwinter or be cold-stratified before they will sprout. Try this technique with Hairy Manzanita (Arctostaphylos Columbian), Kinnikinnick or Common Bearberry, (Arctostaphylos uva-ursi), or Snow Brush (Ceanothus velutinus).”

For more tips on how to germinate native plant seeds check out this website put together by the Washington State University extension service.

http://gardening.wsu.edu/text/nvgrowng.htm

THE STRUCTURE OF SEEDS

Fully developed seeds usually consist of an embryo – a tiny plant with a shoot (plumule) and a root (radicle) together with seed leaves (cotyledons) – that is surrounded by a mass of food (endosperm).

Angiosperms

Flowering plants (angiosperms) are divided into two groups.

Monocotyledons have one seed leaf usually parallel veins on leaves, indistinguishable petals and sepals in multiples of three and non woody stems.

The dicotyledons, also known as dicots, have two seed leaves, net-like veins on the leaves, often small green sepals, petals usually in multiples of four or five and thicker stems that may have woody tissue, formed by the (cambium).

Gymnosperms

The seeds of gymnosperms are “naked” or only partly enclosed by tissues of the parent plant. An example would be a conifer cone.  Conifer cone seeds are wind pollinated and seeds form on the scales of the female cones.

Spores are not seeds. Plants such as mosses, liver worts, ferns, club mosses and horse tails reproduce by spores. A spore may look like a seed but is asexual and develops male and female sex organs independently from the plant that bore it.

REFERENCES

*Albert, D.A., 1995. Regional Landscape Ecosystems of Michigan, Minnesota and Wisconsin: A Working Map and Classification. USDA Forest Service, North Central Forest Experiment Station. General Technical Report NC-178.Viewed on the web on December 1, 2011 http://www.wildtypeplants.com/gentalk.html

Phillips, Harry R., Growing and Propagating Wild Flowers, An easy-to-use guide for all gardeners, The University of North Carolina Press. Available from NJ Audubon stores and many other retailers.

Taylor, Kathryn S. and Hamblin, Stephen, (1963) Handbook of Wild Flower Cultivation: a guide to wild flower cultivation in the home garden, p.14 The Macmillan Company, NY

VOCABULARY

hybrid n. Genetics . The offspring of genetically dissimilar parents or stock, especially the offspring produced by breeding plants or animals of.

rad·i·cle/ˈradikəl/ – The part of a plant embryo that develops into the primary root.  A root like subdivision of a nerve or vein.

A samara is a type of fruit in which a flattened wing of fibrous, papery tissue develops from the ovary wall. A samara is a simple dry fruit and indehiscent (not opening along a seam). It is a winged achene. The shape of a samara enables the wind to carry the seed farther away than regular seeds from the parent tree as in the maples (genus Acer) and ashes (genus Fraxinus).

Scarify– Scarification means scratching or cracking the hard outer coat of a seed to help it germinate. Some seeds  have outer shells that are extremely hard and don’t allow water through. This is one way a seed stays dormant in the fall and winter, until growing conditions improve.

WEB RESOURCES

Here is a link to a wonderful website put together by Washington State University extension service on propagating native plants from seed. http://gardening.wsu.edu/text/nvgrowng.htm

Read Full Post »

Fenders Blue Butterfly and the Kincaid Lupine

I attended a wonderful talk at the Straub Environmental Center is Salem, Oregon last night.  The speaker Gail Gredler an instructor at our local community college spoke about creating native plant gardens. She answered a lot of questions I had about what is a native plant and why are they important to humans and to the planet.

What is a native plant?

First, according to Gail a native plant can be described as plants growing before European settlements started about 200 years ago. Other sources I found also describe them this way: “A native (indigenous) species is one that occurs in a particular region, ecosystem, and habitat without direct or indirect human actions” (Kartesz and  Morse 1997; Richards 1998

Gredler explained that trying to say what is native and what is not is getting harder because some plant specialists are cloning and messing with the DNA of native plants to create “nativars”.  These mad scientists (my judgment) are creating these bio-modified cloned plants so they can patent the plant and make money on each sale of the plant or its seeds.  Bio-modification is not made with ecosystem health in mind so we don’t know if there will be detrimental effects.  People are beginning to sell the look-alikes as natives and so it is important to find a native plant nursery that is registered.  (See resource list at end of this article).  Insects may or may not recognize the plant chemicals of these “nativars”.  Some research on bio-modified corn and other grain crops are showing that insects will not pollinate the crops because the plant chemicals are toxic to the pollinator. The bio-modified grains are causing issues with human and animal health also.

Insects need native plants to survive.  We need insects alive so that our food and medicine and utility plants can be pollinated and fertilized. Without insects and native plants our biome will experience an ecological collapse.

 Ke Chung Kim an entomologist with Penn State University writes in his book “Biodiversity, conservation and inventory: why insects matter”, that insects and anthropods have existed for more than 400 million years and after surviving the Permian and Cretaceous mass extinctions, arthropods have been the most successful of all living things and along with other invertebrates constitute more than three-quarters essential for human food production, and maintaining rain forests, savannahs and other important components of global water storage in ecosystems.

 Without insects we would experience complete eco-system collapse. Native plants are the only food that many pollinator insects will consume. Without native plants, many insects such as the Fender Blue butterfly, the Franklin’s Bumble Bee (Bombus franklini) and Mason bees (Osmia cascadica) will become extinct.  Bringing native plants back into our environment is essential to the survival of humans, fauna and flora. Once the insects are gone, then will fall the birds, squirrels, foxes, rabbits, deer, and other fauna. The food chain will collapse.

According to Gredler 90% of insects depend on native plants for food. Local insects evolved with native plants and are attracted to particular leaf chemicals.  The leaf chemical allows the insect such as the Fender Blue butterfly and pollinators to find food. Only 10% of insects are generalist feeders.

Here are 7 reasons on why native plants are important according to Gredler.

  1. Resource conservation:  Native plants do not need a lot of extra water. They are drought resistant. Most native plants that would grow in Oregon and (Washington, British Columbia) valleys do not need extra water in the summer time. They need well adapted to our dry summers.
  2. Save on the use of fertilizers and pesticides:  Native plants do not need pesticides. They are already acclimated to insect populations and can take care of themselves, thank you.  Fertilizers are applied sparingly.  Having plants grow in correct soil types is more helpful.
  3. Insects need them to survive. As already mentioned: 90% of insects depend on native plants for their survival. 37% of animal species eat herbivorous insects.
  4. Native plants in landscapes will stop the desertification of Cascadia.
  5. Habitat fragmentation is a hazard to wildlife.  Bringing natives back will stop the ecosystem collapse. Native plants provide food, water, and habitat for wildlife.
  6. Plants are the only thing on the planet that can harvest the sun’s energy and create their own food.
  7. Native plants are not necessarily aggressive and can be out done by non-natives. They will need our help to come back.  We need to stop planting aggressive non-natives like the Butterfly plant.

Here are few more from other sources:

8.  Native plants are important to human health. The vast array of natural chemicals is already the basis for ~25% of all U.S. prescriptions, ranging from aspirin (bark of willow tree) to taxol (bark of pacific yew tree).  These plant based medications easily break down in our ecosystems unlike pharmaceutical synthetic hormones and drugs. Use native plants for healing and stop the chemical soup poisoning of our world.

9. Native plant heritage: plants were used for almost everything that humans needed to survive. Think what the world would be like if we stopped producing toxic plastic “stuff” and went back to living simply with few things, essentials made from plants: clothes, homes (not from trees but from fast growing plant fiber and earth such as in Cob buildings).  Paper not made from our forests but from fast growing plant fibers. Humans lived with this technology for hundreds of thousands of years.  We may have to adjust to new ways of living to survive.

10. Native plants can be used to restore our land.  They easily adapt to harsh conditions and have been used in the repair of streams, meadows, savannahs, forests, and other fragile landscapes.

According to Gredler since the 1840’s over 80 million acres have been taken out of native landscapes.  Landscapes have been paved over, planted in non native turf grass and tilled for non native crops.  Gredler called this process the “desertification of Oregon”.  I call this process the desertification of Cascadia because this destruction of the bio-region is happening everywhere.

According to my other source Kartz and Morse, although only about 737 native plant species are protected by the Endangered Species Act, it is estimated that nearly 25 percent of the 20,000 native plant species in North America are at risk of extinction. It is becoming generally recognized that in order to preserve individual species, their plant communities must be preserved. This includes the preservation of native plants that are not yet in danger of extinction, but still play an important role in native ecosystems.

Native plant species provide the keystone elements for ecosystem restoration. Native plants help to increase the local population of native plant species, providing numerous benefits. There are specific associations of mycorrhizae with plants, invertebrates with woody debris, pollinators with flowers, and birds with structural habitat that can only be rebuilt by planting native plants.

 We need your help.  Begin today to tear out the turf and aggressive non-natives and plant your yards to become a native plant repository and sanctuary.

Resources:

Where to find a list of reputable native plant nurseries in cascadia

1. Online PDF booklet of native plant nurseries in Oregon and Washington

http://extension.oregonstate.edu/yamhill/sites/default/files/wholesale_np_nurseries.pdf

2. Sources of Pacific Northwest native plants – a online Pdf booklet

http://extension.oregonstate.edu/yamhill/sites/default/files/sources_for_native_plants.pdf

3. The plight of the Fenders Blue Butterfly and its relationship to Kincaid’s Lupine

http://www.xerces.org/2010/12/10/saving-the-fenders-blue-butterfly/

If you would like to learn more about the relationship between insects and humans, animals and plants, check out the Xerces Society website at:    http://www.xerces.org

References

Kartesz, John, North Carolina Botanical Garden, and Larry Morse, The Nature Conservancy. 1997. Personal communication

Kim, Ke Chung (1994) Biodiversity and Conservation, Volume 2, Number 3, 191-214, DOI: 10.1007/BF00056668, Center for Biodiversity Research, The Pennsylvania State University. http://www.springerlink.com/content/q465056vr1t45u67/

Read Full Post »

Who came first?

“Animals are something invented by plants to move seeds around. An extremely yang solution to a peculiar problem which they faced.”
-Terence McKenna

Read Full Post »